Supporting cells eliminate dying sensory hair cells to maintain epithelial integrity in the avian inner ear.

نویسندگان

  • Jonathan E Bird
  • Nicolas Daudet
  • Mark E Warchol
  • Jonathan E Gale
چکیده

Epithelial homeostasis is essential for sensory transduction in the auditory and vestibular organs of the inner ear, but how it is maintained during trauma is poorly understood. To examine potential repair mechanisms, we expressed β-actin-enhanced green fluorescent protein (EGFP) in the chick inner ear and used live-cell imaging to study how sensory epithelia responded during aminoglycoside-induced hair cell trauma. We found that glial-like supporting cells used two independent mechanisms to rapidly eliminate dying hair cells. Supporting cells assembled an actin cable at the luminal surface that extended around the pericuticular junction and constricted to excise the stereocilia bundle and cuticular plate from the hair cell soma. Hair bundle excision could occur within 3 min of actin-cable formation. After bundle excision, typically with a delay of up to 2-3 h, supporting cells engulfed and phagocytosed the remaining bundle-less hair cell. Dual-channel recordings with β-actin-EGFP and vital dyes revealed phagocytosis was concurrent with loss of hair cell integrity. We conclude that supporting cells repaired the epithelial barrier before hair cell plasmalemmal integrity was lost and that supporting cell activity was closely linked to hair cell death. Treatment with the Rho-kinase inhibitor Y-27632 did not prevent bundle excision but prolonged phagocytic engulfment and resulted in hair cell corpses accumulating within the epithelium. Our data show that supporting cells not only maintain epithelial integrity during trauma but suggest they may also be an integral part of the hair cell death process itself.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SENATE HOUSE VIALET STREET ONDONW C1E7HU Wound Repair in Sensory Organs of the Avian Inner Ear

Hair cells are the sensory receptors of the inner ear, converting sound and accelerations into neuronal signals. Unlike mammals, birds are able to regenerate their sensory function after auditory or vestibular trauma. Sensory regeneration requires a composite programme of epithelial repair, hair cell production and functional reinnervation. The purpose of this thesis was to explore the mechanis...

متن کامل

Therapeutic potential of cell therapy in the repair of hair cells and spiral ganglion neurons: review article

The mammalian cochlea is a highly complex structure which contains several cells, including sensory receptor or hair cells. The main function of the cochlear hair cells is to convert the mechanical vibrations of the sound into electrical signals, then these signals travel to the brain along the auditory nerve. Auditory hair cells in some amphibians, reptiles, fish, and birds can regenerate or r...

متن کامل

Class III beta-tubulin expression in sensory and nonsensory regions of the developing avian inner ear.

A previous study showed that class III beta-tubulin, a widely used neuron-specific marker, is expressed in mature and regenerating hair cells but not the support cells of the avian inner ear. We investigated the expression of this marker in the developing avian inner ear. We found that class III beta-tubulin is not neuron-specific in the avian embryo, but appears to accumulate in neuronal cell ...

متن کامل

Evidence for supporting cell mitosis in response to acoustic trauma in the avian inner ear.

Acoustic overstimulation can lead to sensory cell (hair cell) loss in the auditory epithelium. Damaged hair cells in the organ of Corti (the mammalian auditory end-organ) degenerate and are replaced by non-sensory cells (supporting cells) which construct an irreversible scar. In birds, however, auditory hair cells which are damaged by acoustic trauma or ototoxic drugs may be replaced by new hai...

متن کامل

Hair-cell regeneration in organ cultures of the postnatal chicken inner ear.

The sensory epithelium of the avian inner ear retains into adulthood progenitor cells for inner-ear hair cells and other cell types in the epithelium. Hair cells are produced normally on an ongoing basis in the vestibular sensory epithelium, and hair-cell production is increased after insult in both auditory and vestibular sensory epithelia. The details of postnatal hair-cell production are not...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 30 37  شماره 

صفحات  -

تاریخ انتشار 2010